skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiang, Danlei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electrochemical research often requires stringent combinations of experimental parameters that are demanding to manually locate. Recent advances in automated instrumentation and machine-learning algorithms unlock the possibility for accelerated studies of electrochemical fundamentals via high-throughput, online decision-making. Here we report an autonomous electrochemical platform that implements an adaptive, closed-loop workflow for mechanistic investigation of molecular electrochemistry. As a proof-of-concept, this platform autonomously identifies and investigates anECmechanism, an interfacial electron transfer (Estep) followed by a solution reaction (Cstep), for cobalt tetraphenylporphyrin exposed to a library of organohalide electrophiles. The generally applicable workflow accurately discerns theECmechanism’s presence amid negative controls and outliers, adaptively designs desired experimental conditions, and quantitatively extracts kinetic information of theCstep spanning over 7 orders of magnitude, from which mechanistic insights into oxidative addition pathways are gained. This work opens opportunities for autonomous mechanistic discoveries in self-driving electrochemistry laboratories without manual intervention. 
    more » « less
  2. The roles of unforgiving H 2 SO 4 solvent in CH 4 activation with molecular catalysts have not been experimentally well-illustrated despite computational predictions. Here, we provide experimental evidence that metal-bound bisulfate ligand introduced by H 2 SO 4 solvent is redox-active in vanadium-based electrocatalytic CH 4 activation discovered recently. Replacing one of the two terminal bisulfate ligands with redox-inert dihydrogen phosphate in the pre-catalyst vanadium (V)-oxo dimer completely quenches its activity towards CH 4 , which may inspire environmentally benign catalysis with minimal use of H 2 SO 4 . 
    more » « less
  3. Abstract Although most class (b) transition metals have been studied in regard to CH4activation, divalent silver (AgII), possibly owing to its reactive nature, is the only class (b) high‐valent transition metal center that is not yet reported to exhibit reactivities towards CH4activation. We now report that electrochemically generated AgIImetalloradical readily functionalizes CH4into methyl bisulfate (CH3OSO3H) at ambient conditions in 98 % H2SO4. Mechanistic investigation experimentally unveils a low activation energy of 13.1 kcal mol−1, a high pseudo‐first‐order rate constant of CH4activation up to 2.8×103 h−1at room temperature and a CH4pressure of 85 psi, and two competing reaction pathways preferable towards CH4activation over solvent oxidation. Reaction kinetic data suggest a Faradaic efficiency exceeding 99 % beyond 180 psi CH4at room temperature for potential chemical production from widely distributed natural gas resources with minimal infrastructure reliance. 
    more » « less